Integer and Fractional Packings in Dense Graphs

نویسندگان

  • Penny E. Haxell
  • Vojtech Rödl
چکیده

Let H 0 be any xed graph. For a graph G we deene H 0 (G) to be the maximum size of a set of pairwise edge-disjoint copies of H 0 in G. We say a function from the set of copies of H 0 in G to 0; 1] is a fractional H 0-packing of G if

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer and fractional packings in dense graphs: A simpler proof

Let H0 be a fixed connected graph. For a graph G, the H0-packing number, denoted νH0(G), is the maximum number of pairwise edge-disjoint copies of H0 in G. A function ψ from the set of copies of H0 in G to [0, 1] is a fractional H0-packing of G if ∑ e∈H ψ(H) ≤ 1 for each e ∈ E(G). The fractional H0-packing number, denoted ν H0(G), is defined to be the maximum value of ∑ H∈( G H0) ψ(H) over all ...

متن کامل

Integer and fractional packings in dense 3-uniform hypergraphs

Let 0 be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph we define 0( ) to be the maximum size of a set of pairwise triple-disjoint copies of 0 in . We say a function from the set of copies of 0 in to [0, 1] is a fractional 0-packing of if ¥ e ( ) 1 for every triple e of . Then * 0( ) is defined to be the maximum value of ¥ 0 over all fractional 0-packings of . We show that * 0( ) 0(...

متن کامل

Asymptotically optimal Kk-packings of dense graphs via fractional Kk-decompositions

Let H be a fixed graph. A fractional H-decomposition of a graph G is an assignment of nonnegative real weights to the copies of H in G such that for each e ∈ E(G), the sum of the weights of copies of H containing e is precisely one. An H-packing of a graph G is a set of edge disjoint copies of H in G. The following results are proved. For every fixed k > 2, every graph with n vertices and minim...

متن کامل

Integer and fractional packing of families of graphs

Let F be a family of graphs. For a graph G, the F-packing number, denoted νF (G), is the maximum number of pairwise edge-disjoint elements of F in G. A function ψ from the set of elements of F in G to [0, 1] is a fractional F-packing of G if ∑ e∈H∈F ψ(H) ≤ 1 for each e ∈ E(G). The fractional F-packing number, denoted ν F (G), is defined to be the maximum value of ∑ H∈(G F) ψ(H) over all fractio...

متن کامل

Distinguishing number and distinguishing index of natural and fractional powers of graphs

‎The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$‎ ‎such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial‎ ‎automorphism‎. ‎For any $n in mathbb{N}$‎, ‎the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2001