Integer and Fractional Packings in Dense Graphs
نویسندگان
چکیده
Let H 0 be any xed graph. For a graph G we deene H 0 (G) to be the maximum size of a set of pairwise edge-disjoint copies of H 0 in G. We say a function from the set of copies of H 0 in G to 0; 1] is a fractional H 0-packing of G if
منابع مشابه
Integer and fractional packings in dense graphs: A simpler proof
Let H0 be a fixed connected graph. For a graph G, the H0-packing number, denoted νH0(G), is the maximum number of pairwise edge-disjoint copies of H0 in G. A function ψ from the set of copies of H0 in G to [0, 1] is a fractional H0-packing of G if ∑ e∈H ψ(H) ≤ 1 for each e ∈ E(G). The fractional H0-packing number, denoted ν H0(G), is defined to be the maximum value of ∑ H∈( G H0) ψ(H) over all ...
متن کاملInteger and fractional packings in dense 3-uniform hypergraphs
Let 0 be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph we define 0( ) to be the maximum size of a set of pairwise triple-disjoint copies of 0 in . We say a function from the set of copies of 0 in to [0, 1] is a fractional 0-packing of if ¥ e ( ) 1 for every triple e of . Then * 0( ) is defined to be the maximum value of ¥ 0 over all fractional 0-packings of . We show that * 0( ) 0(...
متن کاملAsymptotically optimal Kk-packings of dense graphs via fractional Kk-decompositions
Let H be a fixed graph. A fractional H-decomposition of a graph G is an assignment of nonnegative real weights to the copies of H in G such that for each e ∈ E(G), the sum of the weights of copies of H containing e is precisely one. An H-packing of a graph G is a set of edge disjoint copies of H in G. The following results are proved. For every fixed k > 2, every graph with n vertices and minim...
متن کاملInteger and fractional packing of families of graphs
Let F be a family of graphs. For a graph G, the F-packing number, denoted νF (G), is the maximum number of pairwise edge-disjoint elements of F in G. A function ψ from the set of elements of F in G to [0, 1] is a fractional F-packing of G if ∑ e∈H∈F ψ(H) ≤ 1 for each e ∈ E(G). The fractional F-packing number, denoted ν F (G), is defined to be the maximum value of ∑ H∈(G F) ψ(H) over all fractio...
متن کاملDistinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 21 شماره
صفحات -
تاریخ انتشار 2001